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Abstract

Recently, confidence intervals (CIs) associated with parameter estimates in the susceptible-

infected-recovered epidemiological model have been developed. When model assumptions

are met and the observation error is relatively small, these CIs are relatively short. This

work describes the behavior of CIs for parameters as observation and/or equation or model

error becomes larger, and includes a comparison of two estimation procedures. One pro-

cedure demonstrates significant bias as observation error increases; the other procedure

demonstrates significant bias as model error increases.

Keywords: epidemiology, susceptible-infected-recovered model uncertainty, parameter es-

timates, bias, mean squared error.

1 Introduction

Recently, confidence intervals (CIs) associated with parameter estimates in the susceptible-

infected-recovered (SIR) epidemiological model have been developed (Chowell et. al. [4]).

When model assumptions are met and the observation error is relatively small, these CIs are

relatively short, as we will illustrate. This work describes the behavior of CIs for parameters as

observation and/or equation or model error becomes larger, and includes a comparison of two

estimation procedures. The first procedure fits a simple linear regression relating the per-time-

step response and predictors. This procedure demonstrates significant bias as observation error

increases. In general, observation error in predictors leads to bias to varying degrees, as has been

illustrated in the “errors-in-variables” literature (Carroll et al. [3]). For example, bias arising

from using measurements of species abundance rather than true species abundance has recently
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been reported in the context of a biological random walk extinction model (Buonaccorsi et al.

[2]). The other procedure evaluated here solves the nonlinear differential equations to produce

parameter estimates, thereby relying heavily on the shape of the observed epidemic curve, and

mitigating the effects of any errors, such as observation errors, that do not distort the curve’s

shape. This method demonstrates significant bias if model error increases sufficiently to distort

the curve’s shape.

Following sections include a brief review of SIR models; associated parameter estimation,

and performance results for several cases having observation or observation plus model errors.

2 Background

Mathematical modeling of infectious diseases can be traced to the work of Sir Ronald Ross

(Ross et al. [21]) who discovered the vector mechanism of transmission of Malaria and explored

the effects of controlling the mosquito population using simple mathematical models. The SIR

model proposed by Kermack and MacKendrick [12] provides an established basis to model the

transmission dynamics of infectious diseases. The SIR model classifies individuals as susceptible

(S), infectious (I), and recovered (R). Susceptible individuals in contact with the virus enter

the infectious class at the rate βI(t)/N where β is the transmission rate, I(t) is the number

of infectious individuals at time t and N(t) = S(t) + I(t) + R(t) is the total population at

time t. This assumes that the disease latency period is negligible. The classical SIR model

assumes homogeneous mixing between individuals and, therefore, the fraction I(t)/N is the

probability that a random contact would be with an infectious individual. For simplicity, we

also assume that the time-scale of the epidemic is much faster than those of demographic
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processes (natural birth and death). Moreover, recovered individuals are assumed to acquire

immunity to the disease for at least the duration of the outbreak. The SIR transmission process

(single outbreak) can then be modeled using the system of nonlinear differential equations:



























Ṡ(t) = −βS(t)I(t)/N

İ(t) = βS(t)I(t)/N − γI(t)

Ṙ(t) = γI(t)

(1)

where the dot denotes the time derivatives.

Alternatively, the differential equations can be viewed as difference equations



























S(t) − S(t − 1) = −βS(t − 1)I(t − 1)/N

I(t) − I(t − 1) = βS(t − 1)I(t − 1)/N − γI(t − 1)

R(t) − R(t − 1) = γI(t − 1)

(2)

which suggests that an estimate of β can be obtained by regressing the response S(t)−S(t−1)

versus the predictor S(t−1)I(t−1)/N , and an estimate of γ can be obtained by regressing the

response R(t) − R(t − 1) versus the predictor I(t − 1). However, it is well known that errors

in predictors leads to bias in the estimated parameters. The effects of errors in predictors is

studied in an area of research that is often referred to as “errors-in-variables” (Carroll et al.

[3]). Bias will be present to varying degrees in our examples to follow. Using the difference

equations, if only the R or only the I series is observed, it is still possible to estimate β and γ

using regression, although performance degrades.
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2.1 The reproductive number and control measures

The basic reproductive number (R0) is the number of secondary cases generated by a pri-

mary infectious individual during its entire period of infectiousness in a completely susceptible

population (Anderson and May [1]). For the SIR epidemic model, R0 is the product of the

transmission rate β and the duration of the infectious period 1/γ, so R0 = β/γ. Estimates of

R0 can be obtained by first estimating β and γ from epidemic curve data, and then substitut-

ing the resulting estimates into the R0 expression. The estimation of the basic reproductive

number by fitting epidemic models to epidemic curve data is probably the most widespread

approach (examples of recent work include Gani et al. [9], Riley et al. [20] and Chowell et al.

[4]). Another common approach to estimate R0 consists in estimating first the initial exponen-

tial growth rate characteristic of most human infectious diseases of rapid dissemination. Then

R0 can be estimated by substituting the estimate of the initial exponential growth rate into

a formula derived from the linearization of the deterministic epidemic model (e.g., Anderson

and May [1], Nowak et al. [17], Lloyd [14], and Lipsitch et al. [13]). A recent review on the

estimation of R0 from epidemiological data is given by Heffernan et al. [10].

While the basic reproductive number is more relevant for the case of emerging infectious

diseases, in the case of endemic or recurrent infectious diseases, the reproductive number (R)

is a more practical quantity because it accounts for the residual immunity in the population

due to previous exposures or vaccination campaigns in the population. Hence, we can write

R = s∗R0 where s∗ is the proportion of the population that is effectively susceptible. One

also needs to account for the effect of control measures aiming at reducing the transmissibility

of the disease. Once the effects of public health measures begin to take hold and the number
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of susceptible individuals decreases, the reproductive number will decay. Hence, the goal of

public health authorities is to bring the reproductive number to a number less than one as soon

as possible. The types of available interventions will depend on the disease in question and

availability of appropriate resources.

One main goal of SIR-type models is to predict the effect of candidate control measures on R.

However, until the relative importance of observational and model errors is well estimated, it is

not clear how reliably SIR-type models can estimate the effect of possible control measures. For

example, if the true population is structured but the method, such as the SIR model, assumes

the population is homogeneously mixing, then parameter estimates and associated mitigation

recommendations will be of questionable value.

Typically, the more mathematically tractable models make the least realistic assumptions

but provide insights on how different factors affect the disease dynamics. For example, we

mentioned that the standard SIR model assumes that infecteds mix homogeneously with sus-

ceptibles. Recent expansions of the SIR model allow varying degrees of heterogeneity. Chowell

et. al. [5] fit a spatially mixing model for the spread of foot-and-mouth disease in which

infected farms were more likely to infect neighboring farms. Demiris and O’Neil [6] used struc-

tured populations in which individuals were partitioned into households and the contact rate

was higher between individuals in the same family. Still more detail is included in agent-based

computational models such as EpiSims (Eubank et. al. [8]). It is generally believed that models

that more closely resemble reality by including such detail can more accurately investigate the

impact of factors that influence disease spread. If this is true, then the best recommendations

concerning mitigation strategies (vaccination, quarantine, movement restrictions, etc.) should
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tend to arise from the richer-model evaluations. It is also generally believed that richer models

are more vulnerable to poorly specified inputs, such as the mixing/contact structure, rate of

disease spread, etc. Therefore, richer models must be implemented in a manner that easily

facilitates performing sensitivity studies.

3 Sensitivity Study

This section presents a sensitivity study concerning two types of errors that impact parameter

estimation in the basic SIR model. The least harmful error type is pure observation error. More

harmful error is model misspecification.

Chowell et. al. [4] modeled observation error in the Robserved time series. A Brownian

Bridge approximation leads to approximate 95% confidence intervals (CI) for β̂ and γ̂. These

CIs should be interpreted as containing 95% of future estimates when the same assumptions are

made and the only noise source is observation error. It is tempting but incorrect to interpret

these CIs as containing the “true” parameters with probability 0.95. We do not address Bayesian

versus non Bayesian interpretations of CIs here. Instead, our focus is on the issue of repeatability

versus accuracy. The Chowell et. al. [4] result is a repeatability result.

The notion of accuracy in epidemiological models requires careful interpretation, because

the parameters are almost never believed to represent real phenomena such as, e.g., the speed

of light in a vacuum. Because no real population obeys the homogeneous mixing assumption

of the SIR model, it is not meaningful to estimate how close β̂ is likely to be to β. The most

meaningful such comparison is to compare the model-based estimate of the impact of candidate

mitigation strategies to the true impact. Because such comparisons typically involve one or a
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few realizations of the stochastic epidemiological situation, this can typically only be done by

stochastically defining the true impact of the strategy. This is a large task that is beyond our

scope here. Instead, we investigate the second type of error, model error, on the SIR model.

Model or equation error is typically the largest error source in epidemiology. Consider

adding an equation error to the difference equations in Eq. (2). Then, for example, equation

error that impacts S(2) will impact S(t) for t > 2. This means that equation error propagates

in potentially harmful ways. For brevity, we will express all three examples of model error to

follow by assuming a constant true β when the “true” β value varies with time. There are

physical reasons for such models (such as unmodeled behavior changes), plus we have verified

that this type of model error is capable of representing other model errors in which the assumed

β equals the true β at each “epidemic day,” which is constant over time, but an unobserved

equation error is added to some subset of the S, I, and R difference equations.

3.1 Parameter estimation

For the SIR model, we estimated the transmission rate β and the inverse of the infectious period

γ using two methods. Both methods used R̂0 = β̂/γ̂ to estimate R0.

3.1.1 Method 1: nonlinear differential equation fitting

This method used least-squares fitting of the equation R(t) in Eq. (1) to epidemic data of

the cumulative number of observed recovered cases. For the least-squares fitting procedure, we

used the Levenberg-Marquardt method with line-search implemented in MATLAB [15] in the

built-in routine lsqcurvefit which is part of the optimization toolbox.
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3.1.2 Method 2: simple regression fitting

This method used the difference equations in Eq. (2) applied to the time series of the observed

R and of the observed I data. To estimate β the predictor was S(t − 1)I(t − 1)/N and the

response was S(t) − S(t − 1). To estimate γ the predictor was I(t − 1) and the response was

R(t) − R(t − 1). Other choices are possible depending on what subset of S, I, and R are

observed. Again least-squares fitting was used, as implemented in Splus (Splus 2004), but

without knowledge of the underlying equations beyond the implicit knowledge used to define

the responses and predictors. This method should demonstrate bias provided the observation

error in the predictors is nonnegligible compared to the range of the predictors (Carroll et al.

[3]).

3.2 Observation error

We simulated epidemic curves using the parametric bootstrap (Efron, 1986) following Chowell

et. al. [4]. The observation error in the Robserved time series was generated by assuming each

increment ∆Robserved has a Poisson distribution, ∆Robserved ∼ Poisson(µ = ∆Rtrue). The

parameter estimation procedures (described above) were then applied for each of 200 simulated

epidemic curves. Because the mean (µ) equals the variance (σ2) for the Poisson distribution, we

also considered more extreme cases with the variance being σ2 = kµ where k = 2,3,4,5 by using

the Gamma or Negative binomial probability distribution. The results reported here are for the

Gamma distribution, and are essentially the same as for the Negative binomial distribution.
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3.3 Model error

We considered three types of model error, each expressed as ignored time variation in the true

β: (1) β varies around βavg according to a uniform distribution. Specifically, each epidemic

day has a unique β value and the time series of β values is independently and identically

distributed according to β ∼ Uniform(βavg − ∆β, βavg + ∆β); (2) β varies as an autoregressive

time series, with βt = aβt−1 + ǫt (t in days). A lag-one autoregressive time series for β,

βt = aβt−1 + ǫt, has variance σ2

β = (1 + a2)× σ2

e , where σ2

e is the variance of the error sequence

et. We chose a = 0.99, and let the error sequence et be independently distributed with a uniform

distribution having the correct range to correspond to a σ2

e that gave the desired value of σ2

β

(equal to 0.32

12
for the ∆β = 0.15 case for example); and (3) β varies deterministically, equal to

a constant until day 15, then exponentially decaying to a new value, so β = β1 for t ≤ 15 and

β = β2 + (β1 − β2) exp (−0.2 × (t − 15)) for t > 15.

4 Results

We experimented with several cases, four of which we will summarize here, divided into cases

having observation error only, or observation error and model error. Model errors are potentially

the most harmful because they tend to propagate. For example, S(2) will impact S(t) for t > 2,

and similarly for I(t) and R(t). The cases summarized here are referred to as cases A, B, C,

and D. The estimated (using Method 1) and observed number of recovered (R(t)) cases for each

case are plotted in Figure 1.

All cases include N values on a grid from 100 to 5000, with the observation error having

variance σ2 = kµ from a gamma distribution, with k = 2 or k = 5. In addition, all cases used
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120 days, β = 0.5, and γ = 0.25, which corresponds to R0 = 2. The initial number of infecteds

was 5.

The results of 200 simulations for each subcase are summarized by reporting the root average

squared scaled error, RASSE = 1

β

√

1

n

∑n

i=1
(β̂i − β)2, which measures the combined effect of

bias and precision of the estimator β̂, and the average scaled bias, 1

βn

∑n

i=1
(β̂i − β). These two

performance measures are reported for β̂, γ̂, and R̂0.

4.1 Observation Error

4.1.1 Case A

Case A is observation error only. Results for Case A are summarized in Figure 2 and Table 1

for Method 1 and for Method 2. Most entries in Tables 1 to 4 are within approximately 0.01 of

replicate results on the basis of a second set of 200 simulations. Method 1 outperforms Method

2 for β̂, γ̂, and R̂0. Method 2 demonstrates sizeable bias for the larger variance (smaller N ,

and k = 5) cases. Fortunately, both methods demonstrate a tendency for the bias in β̂ to

be in the same direction as that of γ̂, resulting in a smaller bias in R̂0 than if that tendency

were not present. This same tendency is demonstrated when model error is included, although

performance is generally worse. Both methods improve as N increases.

4.2 Observation Error and Model Error

Generally, results are significantly worse when model error is included, with Method 2 showing a

potential advantage. As mentioned, Method 1 degrades in some cases with model error because

it relies on the relation between the β and γ parameters and the shape of the R(t) curve.
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4.2.1 Case B

Results for Case B are summarized in Table 2 for Method 1 and for Method 2. Both methods

do worse, but not much worse, than they did for Case A. Both methods improve as N increases.

4.2.2 Case C

Results for Case C are summarized in Table 3 for Method 1 and for Method 2. Both methods

demonstrate large bias for small N , but this decreases for larger N . Especially for Method 2,

and somewhat for Method 1, the RASSE for R̂0 does not noticeably decrease as N increases.

4.2.3 Case D

Results for Case D are summarized in Figure 3 and Table 4 for Method 1 and for Method 2.

This is the worst case for both methods. Method 1 does much worse than Method 2, and does

worse as N increases.

5 Summary

By definition, a model is an intentional simplification of a complex process. Because any model

is therefore “wrong,” a key question is whether a particular model is useful. SIR-type models

have a long history in mathematical biology, with many successful and useful applications

documented (e.g., Kermack and MacKendrick [12], Ross [21], Hethcote and Yorke [11], Perelson

et al. [19], May [16], Okubo and Levin [18]). An important potential application of disease

outbreak modeling is the ability to evaluate candidate mitigation strategies such as quarantine,

vaccine, school closures, etc.
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One aspect of model validation is the ability to estimate model parameters from real or

simulated outbreaks. We have evaluated simulated outbreaks that either exactly followed the

assumed model or that arose from a different model than the estimation procedure assumed.

The former situation included observation error while the latter included both model and obser-

vation error. Two estimation methods were empirically compared on simulated data sets. Both

methods demonstrated bias due to observation error. Method 1, which relies on solving the SIR

model’s differential equations, tended to demonstrate less bias in the presence of observation

error alone, but for some of the model error examples, it demonstrated much worse bias and

total error. This is because Method 1 relies strongly on the shape of the observed number of

recovered cases each time step. Results are summarized in the figures and tables. Generally,

parameter estimates had acceptably small bias and total error in most, but not all cases.

It should be mentioned that if it could be known that a particular type of model departure

(such as a change in the β parameter over time) was known to be in effect, then alternative

estimation strategies could be developed. This was not our goal here. Instead, we used time

dependence in β to generate model error. As mentioned, alternatively, errors could be added

at each “epidemic day” to some subset of the S, I, and R difference equations while keeping β

constant in time. Similarly, if the observation error variance is known, then there are several

known methods for making bias adjustments to estimators. However, this was not our goal here,

and these methods do not necessarily reduce the average root squared error in the estimator.
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Table 1: Case A: Performance results for SIR epidemics (β = 1/2, γ = 1/4, N = 1000, and

I(0) = 5) with observation error only through a Gamma error structure with variance σ2 = kµ

for two values of k, and a comparison of two different estimation methods.

N k β γ R0

ASB RASSE ASB RASSE ASB RASSE

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

100 2 0.01 0.06 0.12 0.42 0.02 0.03 0.22 0.51 0.06 0.11 0.38 0.34

500 2 0.00 0.02 0.04 0.17 0.00 0.00 0.13 0.23 0.02 0.04 0.13 0.18

1000 2 0.00 0.00 0.03 0.12 0.00 -0.01 0.11 0.17 0.01 0.03 0.09 0.14

1500 2 0.00 0.01 0.03 0.10 -0.01 0.00 0.09 0.14 0.01 0.02 0.07 0.10

3000 2 0.00 0.00 0.02 0.07 0.00 -0.01 0.06 0.09 0.00 0.02 0.04 0.07

5000 2 0.00 0.00 0.02 0.05 0.00 -0.01 0.05 0.07 0.00 0.01 0.03 0.05

100 5 0.01 0.21 0.18 0.85 0.08 0.23 0.30 1.01 -0.01 0.19 0.32 0.80

500 5 0.02 0.01 0.07 0.30 0.04 -0.03 0.22 0.38 0.02 0.10 0.23 0.28

1000 5 0.01 0.01 0.05 0.18 0.01 -0.01 0.16 0.24 0.02 0.05 0.15 0.19

1500 5 0.00 0.00 0.04 0.16 0.00 -0.03 0.12 0.21 0.01 0.05 0.10 0.18

3000 5 0.00 0.02 0.03 0.11 -0.01 0.02 0.09 0.16 0.01 0.02 0.07 0.13

5000 5 0.00 0.02 0.03 0.09 0.00 0.00 0.08 0.12 0.01 0.02 0.05 0.08

N = Population size; β = Transmission rate; γ = Recovery rate; R0 = Basic reproductive

number; ASB = Average scaled bias; RASSE= Root average squared scaled error; M1 =

Nonlinear differential equation fitting; M2 = Simple regression fitting.
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Table 2: Case B: Performance results for SIR epidemics (β = 1/2, γ = 1/4, N = 1000, and

I(0) = 5) with observation error through a Gamma error structure with variance σ2 = kµ for

two values of k plus model error in the transmission rate β such that a different value of β for

each epidemic day is independently and identically distributed according to ∼ Uniform(βavg −

∆β, βavg + ∆β) with ∆β = 0.15.

N k β γ R0

ASB RASSE ASB RASSE ASB RASSE

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

100 2 0.01 0.06 0.14 0.41 0.01 0.56 0.23 0.32 0.06 0.34 0.31 0.81

500 2 0.00 0.00 0.06 0.07 -0.01 -0.01 0.14 0.09 0.03 0.01 0.14 0.08

1000 2 0.01 0.01 0.07 0.13 0.01 -0.01 0.13 0.17 0.00 0.03 0.09 0.13

1500 2 0.00 0.00 0.07 0.09 -0.01 -0.01 0.10 0.10 0.01 0.02 0.07 0.08

3000 2 0.00 0.01 0.06 0.07 0.00 0.01 0.10 0.07 0.01 0.00 0.06 0.06

5000 2 0.00 -0.01 0.05 0.07 0.00 0.00 0.08 0.08 0.00 0.00 0.05 0.07

100 5 0.05 0.31 0.56 1.15 0.08 0.28 0.30 1.13 0.14 0.23 1.96 0.74

500 5 0.00 0.03 0.09 0.30 0.00 -0.03 0.23 0.35 0.05 0.13 0.26 0.36

1000 5 0.01 -0.01 0.08 0.20 0.00 -0.05 0.18 0.25 0.03 0.07 0.16 0.23

1500 5 0.01 0.00 0.07 0.16 0.01 0.00 0.15 0.23 0.01 0.04 0.10 0.20

3000 5 0.00 0.00 0.07 0.12 0.00 -0.01 0.12 0.16 0.01 0.03 0.09 0.12

5000 5 0.00 0.02 0.07 0.09 -0.01 0.00 0.10 0.12 0.01 0.02 0.06 0.08

N = Population size; β = Transmission rate; γ = Recovery rate; R0 = Basic reproductive

number; ASB = Average scaled bias; RASSE= Root average squared scaled error; M1 =

Nonlinear differential equation fitting; M2 = Simple regression fitting.
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Table 3: Case C: Performance results for SIR epidemics (β = 1/2, γ = 1/4, N = 1000, and

I(0) = 5) with observation error through a Gamma error structure with variance σ2 = kµ for

two values of k plus model error in the transmission rate β and the recovery rate γ such that a

different value of β and γ for each epidemic day is generated via an autoregressive time series,

with βt = aβt−1 + ǫ (t in days), and similarly for γ.

N k β γ R0

ASB RASSE ASB RASSE ASB RASSE

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

100 2 -0.02 0.14 0.23 1.18 0.07 0.22 0.37 2.27 0.03 0.28 0.65 0.67

500 2 -0.05 0.03 0.26 0.21 0.00 0.01 0.41 0.44 0.05 0.16 0.39 0.48

1000 2 -0.02 0.00 0.25 0.16 -0.01 -0.05 0.40 0.37 0.08 0.23 0.38 0.60

1500 2 0.00 0.00 0.26 0.15 0.00 -0.03 0.45 0.39 0.10 0.22 0.37 0.53

3000 2 0.01 0.02 0.28 0.13 0.01 -0.04 0.53 0.34 0.14 0.28 0.43 0.80

5000 2 -0.03 0.01 0.26 0.12 -0.06 -0.07 0.43 0.32 0.13 0.27 0.41 0.64

100 5 -0.05 0.45 0.27 2.64 0.06 0.62 0.38 3.63 -0.03 0.23 0.37 0.76

500 5 -0.02 0.11 0.26 0.89 0.04 0.15 0.48 1.71 0.05 0.26 0.35 0.68

1000 5 -0.02 0.06 0.24 1.31 -0.04 0.08 0.38 2.75 0.13 0.34 0.45 0.78

1500 5 -0.03 -0.01 0.26 0.22 -0.01 -0.07 0.37 0.40 0.08 0.24 0.38 0.59

3000 5 -0.01 0.01 0.29 0.18 -0.02 -0.04 0.53 0.41 0.18 0.28 0.50 0.73

5000 5 -0.05 0.01 0.24 0.17 -0.07 -0.05 0.40 0.39 0.13 0.25 0.39 0.62

N = Population size; β = Transmission rate; γ = Recovery rate; R0 = Basic reproductive

number; ASB = Average scaled bias; RASSE= Root average squared scaled error; M1 =

Nonlinear differential equation fitting; M2 = Simple regression fitting.
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Table 4: Case D: Performance results for SIR epidemics (β = 1/2, γ = 1/4, N = 1000, and

I(0) = 5) with observation error through a Gamma error structure with variance σ2 = kµ

for two values of k plus model error such that β varies deterministically, equal to a constant

until day 15, then exponentially decaying to a new value, so β = β1 for t ≤ 15 and β =

β2 + (β1 − β2) exp (−0.2 × (t − 15)) for t > 15.

N k β γ R0

ASB RASSE ASB RASSE ASB RASSE

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

100 2 0.83 0.80 0.85 1.04 0.12 0.06 0.26 0.49 0.71 0.07 0.86 0.34

500 2 1.04 0.45 1.04 0.54 0.49 -0.02 0.51 0.24 0.38 -0.12 0.39 0.17

1000 2 1.21 0.31 1.21 0.37 0.73 -0.02 0.74 0.18 0.28 -0.22 0.29 0.23

1500 2 1.34 0.22 1.35 0.29 0.91 -0.01 0.92 0.18 0.23 -0.28 0.23 0.28

3000 2 1.63 0.11 1.63 0.18 1.32 -0.01 1.32 0.15 0.14 -0.35 0.14 0.35

5000 2 1.90 0.05 1.91 0.14 1.69 -0.01 1.69 0.14 0.08 -0.38 0.08 0.38

100 5 0.86 1.08 0.91 1.77 0.20 0.24 0.36 0.98 0.66 0.17 0.88 0.80

500 5 1.03 0.48 1.04 0.66 0.48 0.01 0.53 0.39 0.40 -0.11 0.43 0.22

1000 5 1.23 0.30 1.24 0.46 0.76 -0.03 0.78 0.32 0.28 -0.20 0.29 0.23

1500 5 1.36 0.24 1.36 0.41 0.93 -0.01 0.94 0.32 0.23 -0.26 0.23 0.27

3000 5 1.63 0.13 1.64 0.28 1.32 0.01 1.33 0.26 0.14 -0.34 0.14 0.34

5000 5 1.91 0.02 1.91 0.19 1.70 -0.03 1.70 0.21 0.08 -0.38 0.08 0.38

N = Population size; β = Transmission rate; γ = Recovery rate; R0 = Basic reproductive

number; ASB = Average scaled bias; RASSE= Root average squared scaled error; M1 =

Nonlinear differential equation fitting; M2 = Simple regression fitting.
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Figure 1: Representative simulated epidemic curves (dots) and their corresponding fit (solid

line) using the standard SIR model with nonlinear differential equation fitting to the cumulative

number of recovered cases R(t) in log scale with N = 1000, β = 1/2, γ = 1/4, and I(0) = 5.

A) SIR epidemic curve with observation error generated using a Gamma error structure with

variance σ2 = 2µ; B) Case A) plus model error in the transmission rate β such that a different

value of β for each epidemic day is independently and identically distributed according to

∼ Uniform(βavg − ∆β, βavg + ∆β) with ∆β = 0.15; C) Case A) plus model error such that a

different value of β and γ for each epidemic day is generated via an autoregressive time series,

with βt = aβt−1 + ǫ (t in days), and similarly for γ; D) Case A plus model error such that β

varies deterministically, equal to a constant until day 15, then exponentially decaying to a new

value, so β = β1 for t ≤ 15 and β = β2 + (β1 − β2) exp (−0.2 × (t − 15)) for t > 15.
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Figure 2: The average scaled bias for Case A for estimates of β, γ, and R0 = β/γ from SIR

epidemics (β = 1/2, γ = 1/4, N = 1000, and I(0) = 5) using two different estimation methods

with observation error only through a Gamma error structure with variance σ2 = kµ for two

values of k = 2 (solid) and 5 (dashed) as a function of the population size N .
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Figure 3: The root average squared scaled error (RASSE) for case A for estimates of β, γ, and

R0 = β/γ from SIR epidemics (β = 1/2, γ = 1/4, N = 1000, and I(0) = 5) using two different

estimation methods with observation error only through a Gamma error structure with variance

σ2 = kµ for two values of k = 2 (solid) and 5 (dashed) as a function of the population size N .
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Figure 4: The average scaled bias for case D for estimates of β, γ, and R0 = β/γ as a function

of the population size N from SIR epidemics (β = 1/2, γ = 1/4, N = 1000, and I(0) = 5) using

two different estimation methods with observation error through a Gamma error structure with

variance σ2 = kµ for two values of k = 2 (solid) and 5(dashed) plus model error such that β

varies deterministically, equal to a constant until day 15, then exponentially decaying to a new

value, so β = β1 for t ≤ 15 and β = β2 + (β1 − β2) exp (−0.2 × (t − 15)) for t > 15.
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Figure 5: The root average squared scaled error (RASSE) for case D for estimates of β, γ,

and R0 = β/γ as a function of the population size N from SIR epidemics (β = 1/2, γ =

1/4, N = 1000, and I(0) = 5) using two different estimation methods with observation error

through a Gamma error structure with variance σ2 = kµ for two values of k = 2 (solid) and

5 (dashed) plus model error such that β varies deterministically, equal to a constant until day

15, then exponentially decaying to a new value, so β = β1 for t ≤ 15 and β = β2 + (β1 −

β2) exp (−0.2 × (t − 15)) for t > 15.
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